KIT | KIT-Bibliothek | Impressum | Datenschutz

Extending Partial Representations of Circle Graphs in Near-Linear Time

Brückner, Guido 1,2; Rutter, Ignaz; Stumpf, Peter
1 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)
2 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

The partial representation extension problem generalizes the recognition problem for geometric intersection graphs. The input consists of a graph G, a subgraph $H ⊆ G$ and a representation $\mathcal{R}′$ of H . The question is whether G admits a representation $\mathcal{R}$ whose restriction to H is $\mathcal{R}′$. We study this question for circle graphs, which are intersection graphs of chords of a circle. Their representations are called chord diagrams. We show that for a graph with n vertices and m edges the partial representation extension problem can be solved in $O((n + m)α(n + m))$ time, thereby improving over an $O(n^3)$-time algorithm by Chaplick et al. (J Graph Theory 91(4), 365–394, 2019). The main technical contributions are a canonical way of orienting chord diagrams and a novel compact representation of the set of all canonically oriented chord diagrams that represent a given circle graph G, which is of independent interest.


Verlagsausgabe §
DOI: 10.5445/IR/1000170059
Veröffentlicht am 17.04.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 0178-4617, 1432-0541
KITopen-ID: 1000170059
Erschienen in Algorithmica
Verlag Springer
Band 86
Seiten 2152–2173
Vorab online veröffentlicht am 26.03.2024
Schlagwörter Circle graphs, Simultaneous representation, Geometric intersection graphs, Recognition
Nachgewiesen in Scopus
Web of Science
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page