KIT | KIT-Bibliothek | Impressum | Datenschutz

Statistical methods for probabilistic forecasts of real-valued outcomes

Walz, Eva-Maria 1
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

The work considers three essential steps to properly perform a forecasting task where the target variable is real-valued and the corresponding forecasts are probabilistic. The three steps involve data analysis, fitting a model and forecast evaluation.

For binary target variables, there exist various methods to properly perform each of the forecasting steps while for continuous data the set of possible approaches is considerably smaller. To overcome this shortcoming, three new tools are presented which are either extensions of binary approaches or motivated by their binary counterpart.

First, a natural extension of classical ROC analysis is presented in the form of ROC movies, UROC curve and CPA. Then EasyUQ and smooth EasyUQ are introduced which produce calibrated statistical forecast distributions based on real-valued model output. Finally, a CRPS decomposition is proposed to obtain more informative components for forecast evaluation. In the last chapter of this thesis, the new tools are successively applied to a challenge weather forecasting problem, namely producing probabilistic forecasts for accumulated precipitation over the tropics.


Volltext §
DOI: 10.5445/IR/1000170069
Veröffentlicht am 19.04.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO)
Institut für Stochastik (STOCH)
Publikationstyp Hochschulschrift
Publikationsdatum 19.04.2024
Sprache Englisch
Identifikator KITopen-ID: 1000170069
Verlag Karlsruher Institut für Technologie (KIT)
Umfang ix, 197 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Stochastik (STOCH)
Prüfungsdatum 07.02.2024
Referent/Betreuer Gneiting, Tilmann
Knippertz, Peter
Trabs, Mathias
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page