KIT | KIT-Bibliothek | Impressum | Datenschutz

Nonlinear Stability and Asymptotic Behavior of Periodic Wave Trains in Reaction–Diffusion Systems Against $$C_{\textrm{ub}}$$-perturbations

de Rijk, Björn 1
1 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)

Abstract:

We present a nonlinear stability theory for periodic wave trains in reaction–diffusion systems, which relies on pure -estimates only. Our analysis shows that localization or periodicity requirements on perturbations, as present in the current literature, can be completely lifted. Inspired by previous works considering localized perturbations, we decompose the semigroup generated by the linearization about the wave train and introduce a spatio-temporal phase modulation to capture the most critical dynamics, which is governed by a viscous Burgers’ equation. We then aim to close a nonlinear stability argument by iterative estimates on the corresponding Duhamel formulation, where, hampered by the lack of localization, we must rely on diffusive smoothing to render decay of the semigroup. However, this decay is not strong enough to control all terms in the Duhamel formulation. We address this difficulty by applying the Cole–Hopf transform to eliminate the critical Burgers’-type nonlinearities. Ultimately, we establish nonlinear stability of diffusively spectrally stable wave trains against -perturbations. Moreover, we show that the perturbed solution converges to a modulated wave train, whose phase and wavenumber are approximated by solutions to the associated viscous Hamilton–Jacobi and Burgers’ equation, respectively.


Verlagsausgabe §
DOI: 10.5445/IR/1000170163
Veröffentlicht am 22.04.2024
Originalveröffentlichung
DOI: 10.1007/s00205-024-01980-2
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2024
Sprache Englisch
Identifikator ISSN: 0003-9527, 1432-0673
KITopen-ID: 1000170163
Erschienen in Archive for Rational Mechanics and Analysis
Verlag Springer
Band 248
Heft 3
Seiten Art.-Nr.: 36
Vorab online veröffentlicht am 13.04.2024
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page