KIT | KIT-Bibliothek | Impressum | Datenschutz

Design of Modified Polymer Membranes Using Machine Learning

Glass, Sarah 1; Schmidt, Martin; Merten, Petra; Abdul Latif, Amira; Fischer, Kristina; Schulze, Agnes; Friederich, Pascal ORCID iD icon 1,2; Filiz, Volkan
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Surface modification is an attractive strategy to adjust the properties of polymer membranes. Unfortunately, predictive structure–processing–property relationships between the modification strategies and membrane performance are often unknown. One possibility to tackle this challenge is the application of data-driven methods such as machine learning. In this study, we applied machine learning methods to data sets containing the performance parameters of modified membranes. The resulting machine learning models were used to predict performance parameters, such as the pure water permeability and the zeta potential of membranes modified with new substances. The predictions had low prediction errors, which allowed us to generalize them to similar membrane modifications and processing conditions. Additionally, machine learning methods were able to identify the impact of substance properties and process parameters on the resulting membrane properties. Our results demonstrate that small data sets, as they are common in materials science, can be used as training data for predictive machine learning models. Therefore, machine learning shows great potential as a tool to expedite the development of high-performance membranes while reducing the time and costs associated with the development process at the same time.


Verlagsausgabe §
DOI: 10.5445/IR/1000170192
Veröffentlicht am 23.04.2024
Originalveröffentlichung
DOI: 10.1021/acsami.3c18805
Scopus
Zitationen: 3
Web of Science
Zitationen: 2
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 04.2024
Sprache Englisch
Identifikator ISSN: 1944-8244, 1944-8252
KITopen-ID: 1000170192
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in ACS Applied Materials & Interfaces
Verlag American Chemical Society (ACS)
Band 16
Heft 16
Seiten 20990–21000
Vorab online veröffentlicht am 11.04.2024
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page