KIT | KIT-Bibliothek | Impressum | Datenschutz

Future Residential Energy System Design

Kleinebrahm, Max ORCID iD icon 1
1 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)

Abstract:

The objective of greenhouse gas-neutral economies and associated advancements in low-carbon technologies lead to a transformation of the way electricity and heat are supplied and consumed. Across the residential sector, rising energy procurement costs alongside decreasing capital costs for renewable energy technologies have driven recent trends toward individual and independent energy supply systems. Further, the electrification of mobility and heating will fundamentally change the structure of electricity demand. A comprehensive understanding of the underlying drivers that shape residential energy demand and supply is essential for designing future energy systems. Models representing fundamental connections that shape energy supply and demand and extrapolate techno-economic framework conditions are needed to predict future dissemina-tion and impacts of building energy systems.
In this thesis, neural network-based approaches from the field of natural language processing are introduced to the field of behavioral modeling. The proposed methodology enables the genera-tion of synthetic activity and mobility schedules of household occupants, which form the basis for a consistent simulation of residential electricity, heat, and mobility demand. ... mehr


Volltext §
DOI: 10.5445/IR/1000170239
Veröffentlicht am 28.05.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Publikationstyp Hochschulschrift
Publikationsdatum 28.05.2024
Sprache Englisch
Identifikator KITopen-ID: 1000170239
HGF-Programm 37.12.01 (POF IV, LK 01) Digitalization & System Technology for Flexibility Solutions
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xi, 210 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Wirtschaftswissenschaften (WIWI)
Institut Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Prüfungsdatum 28.02.2024
Schlagwörter Household sector transformation, occupancy modelling, self-sufficient buildings, neural networks, energy system optimization
Relationen in KITopen
Referent/Betreuer Fichtner, Wolf
Hagenmeyer, Veit
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page