KIT | KIT-Bibliothek | Impressum | Datenschutz

Image-based identification of optical quality and functional properties in inkjet-printed electronics using machine learning

Polomoshnov, Maxim ORCID iD icon 1; Reichert, Klaus-Martin 1; Rettenberger, Luca ORCID iD icon 1; Ungerer, Martin ORCID iD icon 1; Hernandez-Sosa, Gerardo ORCID iD icon 2; Gengenbach, Ulrich 1; Reischl, Markus ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

We propose a novel image-analysis based machine-learning approach to the fully-automated identification of the optical quality, of functional properties, and of manufacturing parameters in the field of 2D inkjet-printed test structures of conductive traces. To this end, a customizable modular concept to simultaneously identify or predict dissimilar properties of printed functional structures based on images is described and examined. An application domain of the concept in the printing production process is outlined. To examine performance, we develop a dataset of over 5000 test structures containing images and physical characteristics, which are manufactured using commercially available materials. Functional test structures are fabricated via a single-nozzle vector-based inkjet-printing system and thermally sintered. Physical characterization of electrical conductance, image capturing, and evaluation of the optical quality of the test structures is done by an automatic in-house built measurement station. Conceptionally, the design of a convolutional neural network is described to identify the optical quality and physical characteristics based only on acquired images. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000170251
Veröffentlicht am 25.04.2024
Originalveröffentlichung
DOI: 10.1007/s10845-024-02385-4
Scopus
Zitationen: 1
Web of Science
Zitationen: 8
Dimensions
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Mikrostrukturtechnik (IMT)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 0956-5515, 1572-8145
KITopen-ID: 1000170251
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in Journal of Intelligent Manufacturing
Verlag Springer
Band 36
Seiten 2709–2726
Vorab online veröffentlicht am 24.04.2024
Schlagwörter Computer vision, Image analysis, Inkjet printing, Machine learning, Neural network, Printed electronics
Nachgewiesen in Web of Science
Scopus
OpenAlex
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page