KIT | KIT-Bibliothek | Impressum | Datenschutz

Artificial Intelligence in Magnetic Resonance: A Focus on Enhanced NMR Shimming and RASER MRI Artefact Correction

Becker, Moritz ORCID iD icon 1
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This thesis explores artificial intelligence (AI) methods, such as deep learning (DL), for two applications in nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI). Specifically, an AI-driven approach for enhancing the tedious and time-consuming shimming process in NMR spectroscopy was initiated. Additionally, the image quality of a new MRI technique, namely RASER (Radio-frequency Amplification by Stimulated emission of Radiation), was improved through DL-based artefact removal.

A highly homogeneous magnetic field, up to parts-per-billion (ppb), is crucial to achieve accurate NMR/MRI results. This can be achieved by using "shim coils" to compensate for magnetic field gradients and make the field as uniform as possible, which is a time-consuming and tedious process. Thus, proper and fast shimming is critical, which is hampered by the non-bijectivity between field distortions in the sample volume and one-dimensional NMR signals. As the primary contribution of this thesis, four studies have been developed to accelerate shimming by incorporating deep learning (DL). These AI-driven shimming studies cover the full DL pipeline from data acquisition, preprocessing, architecture design, training, and deployment.
... mehr


Volltext §
DOI: 10.5445/IR/1000170292
Veröffentlicht am 30.04.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Hochschulschrift
Publikationsdatum 30.04.2024
Sprache Englisch
Identifikator KITopen-ID: 1000170292
HGF-Programm 43.35.01 (POF IV, LK 01) Platform for Correlative, In Situ & Operando Charakterizat.
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xii, 162 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Maschinenbau (MACH)
Institut Institut für Mikrostrukturtechnik (IMT)
Prüfungsdatum 24.04.2024
Projektinformation SFB 1527; HyPERiON (DFG, DFG KOORD, SFB 1527_1)
Schlagwörter Artificial Intelligence, Magnetic Resonance, Shimming, RASER MRI
Referent/Betreuer Korvink, Jan Gerrit
Friederich, Pascal
Jouda, Mazin
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page