KIT | KIT-Bibliothek | Impressum | Datenschutz

Machine Learning With Computer Networks: Techniques, Datasets, and Models

Afifi, Haitham; Pochaba, Sabrina; Boltres, Andreas 1; Laniewski, Dominic; Haberer, Janek; Paeleke, Leonard; Poorzare, Reza; Stolpmann, Daniel; Wehner, Nikolas; Redder, Adrian; Samikwa, Eric; Seufert, Michael
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

Machine learning has found many applications in network contexts. These include solving optimisation problems and managing network operations. Conversely, networks are essential for facilitating machine learning training and inference, whether performed centrally or in a distributed fashion. To conduct rigorous research in this area, researchers must have a comprehensive understanding of fundamental techniques, specific frameworks, and access to relevant datasets. Additionally, access to training data can serve as a benchmark or a springboard for further investigation. All these techniques are summarized in this article; serving as a primer paper and hopefully providing an efficient start for anybody doing research regarding machine learning for networks or using networks for machine learning.


Verlagsausgabe §
DOI: 10.5445/IR/1000170490
Veröffentlicht am 07.05.2024
Originalveröffentlichung
DOI: 10.1109/ACCESS.2024.3384460
Scopus
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 03.04.2024
Sprache Englisch
Identifikator ISSN: 2169-3536
KITopen-ID: 1000170490
Erschienen in IEEE Access
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 12
Seiten 54673–54720
Schlagwörter Computer networking, datasets, machine learning, metrics, tools
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page