KIT | KIT-Bibliothek | Impressum | Datenschutz

HILL: A Hallucination Identifier for Large Language Models

Leiser, Florian ORCID iD icon 1; Eckhardt, Sven; Leuthe, Valentin 2; Knaeble, Merlin 2; Maedche, Alexander 3; Schwabe, Gerhard; Sunyaev, Ali 1
1 Fakultät für Wirtschaftswissenschaften (WIWI), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)
3 Institut für Wirtschaftsinformatik und Marketing (IISM), Karlsruher Institut für Technologie (KIT)

Abstract:

Large language models (LLMs) are prone to hallucinations, i.e., nonsensical, unfaithful, and undesirable text. Users tend to overrely on LLMs and corresponding hallucinations which can lead to misinterpretations and errors. To tackle the problem of overreliance, we propose HILL, the "Hallucination Identifier for Large Language Models". First, we identified design features for HILL with a Wizard of Oz approach with nine participants. Subsequently, we implemented HILL based on the identified design features and evaluated HILL's interface design by surveying 17 participants. Further, we investigated HILL's functionality to identify hallucinations based on an existing question-answering dataset and five user interviews. We find that HILL can correctly identify and highlight hallucinations in LLM responses which enables users to handle LLM responses with more caution. With that, we propose an easy-to-implement adaptation to existing LLMs and demonstrate the relevance of user-centered designs of AI artifacts.


Verlagsausgabe §
DOI: 10.5445/IR/1000170638
Veröffentlicht am 13.05.2024
Originalveröffentlichung
DOI: 10.1145/3613904.3642428
Scopus
Zitationen: 1
Dimensions
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Institut für Wirtschaftsinformatik und Marketing (IISM)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 11.05.2024
Sprache Englisch
Identifikator ISBN: 979-8-4007-0330-0
KITopen-ID: 1000170638
Erschienen in CHI '24: Proceedings of the CHI Conference on Human Factors in Computing Systems. Ed.: F. Mueller
Veranstaltung Conference on Human Factors in Computing Systems (CHI 2024), Honolulu, HI, USA, 11.05.2024 – 16.05.2024
Verlag Association for Computing Machinery (ACM)
Seiten Art.-Nr.: 482
Nachgewiesen in Scopus
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page