KIT | KIT-Bibliothek | Impressum | Datenschutz

Full-scale numerical simulations of standing-wave thermoacoustic engines with circular-pore and pin-array stacks

Chen, Geng; Tao, Shancheng; Wang, Kai; Tang, Lihua; Li, Zhaoyu; Xu, Jingyuan ORCID iD icon 1; Yu, Zhibin
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Thermoacoustic engines (TAEs) can convert thermal energy into acoustic energy with no moving parts. Previous numerical studies normally focused on the TAEs with a parallel-plate stack due to their simple structures and used two-dimensional (2-D) computational fluid dynamics (CFD) models to save computational costs. In this study, we conduct full-scale three-dimensional (3-D) CFD simulations on the standing-wave TAEs with more complicated circular-pore and pin-array stacks. Firstly, the dynamic behavior of the standing-wave TAEs in the start-up process is investigated. It is found that the optimal ratios of hydraulic radius rh to thermal penetration depth δk for the TAEs with circular-pore and pin-array stacks are 2 and 3.2, respectively. Secondly, the acoustic, hydrodynamic, and thermodynamic characteristics of the standing-wave TAEs in the steady-state process are explored. We find that when operating at optimal rh/δk, the TAE with a pin-array stack generates much larger acoustic power than that with a circular-pore stack. Examination of the vortex shedding at the stack ends indicates that the pin arrays exhibit less flow resistance than circular pores. ... mehr

Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 15.08.2024
Sprache Englisch
Identifikator ISSN: 0017-9310, 1879-2189
KITopen-ID: 1000170676
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in International Journal of Heat and Mass Transfer
Verlag Elsevier
Band 228
Seiten Art.-Nr.: 125605
Vorab online veröffentlicht am 30.04.2024
Schlagwörter Thermoacoustic engine, Computational fluid dynamics, Circular pores, Pin arrays, Vortex shedding, Low-grade heat recovery
Nachgewiesen in Web of Science
OpenAlex
Scopus
Dimensions

Verlagsausgabe §
DOI: 10.5445/IR/1000170676
Veröffentlicht am 14.05.2024
Originalveröffentlichung
DOI: 10.1016/j.ijheatmasstransfer.2024.125605
Scopus
Zitationen: 4
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Seitenaufrufe: 85
seit 14.05.2024
Downloads: 25
seit 19.05.2024
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page