KIT | KIT-Bibliothek | Impressum | Datenschutz

Full-scale numerical simulations of standing-wave thermoacoustic engines with circular-pore and pin-array stacks

Chen, Geng; Tao, Shancheng; Wang, Kai; Tang, Lihua; Li, Zhaoyu; Xu, Jingyuan ORCID iD icon 1; Yu, Zhibin
1 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Thermoacoustic engines (TAEs) can convert thermal energy into acoustic energy with no moving parts. Previous numerical studies normally focused on the TAEs with a parallel-plate stack due to their simple structures and used two-dimensional (2-D) computational fluid dynamics (CFD) models to save computational costs. In this study, we conduct full-scale three-dimensional (3-D) CFD simulations on the standing-wave TAEs with more complicated circular-pore and pin-array stacks. Firstly, the dynamic behavior of the standing-wave TAEs in the start-up process is investigated. It is found that the optimal ratios of hydraulic radius $r_h$ to thermal penetration depth $δ_k$ for the TAEs with circular-pore and pin-array stacks are 2 and 3.2, respectively. Secondly, the acoustic, hydrodynamic, and thermodynamic characteristics of the standing-wave TAEs in the steady-state process are explored. We find that when operating at optimal $r_h/δ_k$, the TAE with a pin-array stack generates much larger acoustic power than that with a circular-pore stack. Examination of the vortex shedding at the stack ends indicates that the pin arrays exhibit less flow resistance than circular pores. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000170676
Veröffentlicht am 14.05.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 15.08.2024
Sprache Englisch
Identifikator ISSN: 0017-9310, 1879-2189
KITopen-ID: 1000170676
Erschienen in International Journal of Heat and Mass Transfer
Verlag Elsevier
Band 228
Seiten Art.-Nr.: 125605
Vorab online veröffentlicht am 30.04.2024
Schlagwörter Thermoacoustic engine, Computational fluid dynamics, Circular pores, Pin arrays, Vortex shedding, Low-grade heat recovery
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page