KIT | KIT-Bibliothek | Impressum | Datenschutz

Recognizing affective states from the expressive behavior of tennis players using convolutional neural networks

Jekauc, Darko 1; Burkart, Diana 2; Fritsch, Julian 1; Hesenius, Marc; Meyer, Ole; Sarfraz, Saquib 3; Stiefelhagen, Rainer ORCID iD icon 3
1 Institut für Sport und Sportwissenschaft (IfSS), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)
3 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

This study describes an AI model by leveraging advanced Convolutional Neural Networks (CNNs) to recognize affective states in real-world sports settings, particularly tennis matches. In contrast to prior studies that primarily utilized data acquired from actors and rudimentary statistical methods, the present research emphasizes the analysis of bodily expressions in real-life contexts, aiming for a more naturalistic representation of human emotions. Our CNN-based models demonstrate an accuracy rate of up to 68.9 %, outperforming or matching human observers in many instances. Intriguingly, both the machine learning models and human observers exhibited a shared propensity to more effectively identify negative affective states, which may be attributed to the more intense and straightforward expression of these states. These results not only advance the state of the art in affective state recognition but also pave the way for broader applications, including in healthcare and automotive safety sectors, thereby constituting a significant advancement in the development of sophisticated and universally applicable emotional recognition systems.


Verlagsausgabe §
DOI: 10.5445/IR/1000170677
Veröffentlicht am 14.05.2024
Originalveröffentlichung
DOI: 10.1016/j.knosys.2024.111856
Scopus
Zitationen: 4
Web of Science
Zitationen: 2
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Sport und Sportwissenschaft (IfSS)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 08.07.2024
Sprache Englisch
Identifikator ISSN: 0950-7051, 1872-7409
KITopen-ID: 1000170677
Erschienen in Knowledge-Based Systems
Verlag Elsevier
Band 295
Seiten Art.-Nr.: 111856
Vorab online veröffentlicht am 24.04.2024
Schlagwörter Emotion, Affect recognition, CNN, Tennis, Body language, Automated affect recognition
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page