KIT | KIT-Bibliothek | Impressum | Datenschutz

Improved Quantile Convolutional and Recurrent Neural Networks for Electric Vehicle Battery Temperature Prediction

Billert, Andreas M. 1; Yu, Runyao; Erschen, Stefan; Frey, Michael ORCID iD icon 1; Gauterin, Frank ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract:

The battery thermal management of electric vehicles can be improved using neural networks
predicting quantile sequences of the battery temperature. This work extends a method for the development of
Quantile Convolutional and Quantile Recurrent Neural Networks (namely Q*NN). Fleet data of 225 629 drives
are clustered and balanced, simulation data from 971 simulations are augmented before they are combined for
training and testing. The Q*NN hyperparameters are optimized using an efficient Bayesian optimization, before
the Q*NN models are compared with regression and quantile regression models for four horizons. The analysis
of point-forecast and quantile-related metrics shows the superior performance of the novel Q*NN models. The
median predictions of the best performing model achieve an average RMSE of 0.66°C and R$^2$ of 0.84. The
predicted 0.99 quantile covers 98.87% of the true values in the test data. In conclusion, this work proposes an
extended development and comparison of Q*NN models for accurate battery temperature prediction.


Verlagsausgabe §
DOI: 10.5445/IR/1000170987
Veröffentlicht am 28.05.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2024
Sprache Englisch
Identifikator ISSN: 2096-0654, 2097-406X
KITopen-ID: 1000170987
Erschienen in Big Data Mining and Analytics
Verlag Tsinghua University Press
Band 7
Heft 2
Seiten 512 – 530
Vorab online veröffentlicht am 22.04.2024
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page