KIT | KIT-Bibliothek | Impressum | Datenschutz

Detection of shading for short-term power forecasting of photovoltaic systems using machine learning techniques

Kappler, Tim ORCID iD icon 1; Starosta, Anna Sina ORCID iD icon 1; Munzke, Nina ORCID iD icon 1; Schwarz, Bernhard ORCID iD icon 1; Hiller, Marc 1
1 Elektrotechnisches Institut (ETI), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper presents a machine learning based solar power forecast method that can take into
account shading related fluctuations. The generated PV power is difficult to predict because there are various
fluctuations. Such fluctuations can be weather related when a cloud passes over the array. But they can also
occur due to shading caused by stationary obstacles, and this paper addresses this form of shading. In this work
an approach is presented that improves the forecast under such fluctuations caused by shading. A correction of
the prediction could successfully reduce error due to shading. The evaluation of the model is based on five sets of
recorded shading data, where shading resulted from intentionally placed structures. The correction uses internal
inverter data and irradiance values of the previous day to perform the correction and was able to reduce the
RMSE of four 10 kWp systems with different orientation and tilt angle under shading and thus improve the
prediction accuracy by up to 40%. The model can detect how intense the shading is and correct the forecast by
itself.


Verlagsausgabe §
DOI: 10.5445/IR/1000171395
Veröffentlicht am 07.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Elektrotechnisches Institut (ETI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2105-0716
KITopen-ID: 1000171395
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Erschienen in EPJ Photovoltaics
Verlag EDP Sciences
Band 15
Seiten Art.-Nr.: 17
Projektinformation VP: Solarpark (BMWK, 03EE1135A)
Bemerkung zur Veröffentlichung Special Issue on ‘EU PVSEC 2023: State of the Art and Developments in Photovoltaics’, edited by Robert Kenny and João Serra
Vorab online veröffentlicht am 08.05.2024
Nachgewiesen in Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page