KIT | KIT-Bibliothek | Impressum | Datenschutz

Improving forecasts of precipitation extremes over northern and central Italy using machine learning

Grazzini, Federico ; Dorrington, Joshua 1,2; Grams, Christian M. 1,2; Craig, George C.; Magnusson, Linus; Vitart, Frederic
1 Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO), Karlsruher Institut für Technologie (KIT)
2 Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT)

Abstract:

The accurate prediction of intense precipitation events is one of the main
objectives of operational weather services. This task is even more relevant
nowadays, with the rapid progression of global warming which intensifies
these events. Numerical weather prediction models have improved continuously
over time, providing uncertainty estimation with dynamical ensembles. How-
ever, direct precipitation forecasting is still challenging. Greater availability of
machine-learning tools paves the way to a hybrid forecasting approach, with the
optimal combination of physical models, event statistics, and user-oriented post-
processing. Here we describe a specific chain, based on a random-forest (RF)
pipeline, specialised in recognising favourable synoptic conditions leading to
precipitation extremes and subsequently classifying extremes into predefined
types. The application focuses on northern and central Italy, taken as a testbed
region, but is seamlessly extensible to other regions and time-scales. The system
is called MaLCoX (Machine Learning model predicting Conditions for eXtreme
precipitation) and is running daily at the Italian regional weather service of
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000171435
Veröffentlicht am 07.06.2024
Originalveröffentlichung
DOI: 10.1002/qj.4755
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2024
Sprache Englisch
Identifikator ISSN: 0035-9009, 1477-870X
KITopen-ID: 1000171435
HGF-Programm 12.11.34 (POF IV, LK 01) Improved predictions from weather to climate scales
Erschienen in Quarterly Journal of the Royal Meteorological Society
Verlag John Wiley and Sons
Band 150
Heft 762
Seiten 3167-3181
Vorab online veröffentlicht am 15.05.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page