KIT | KIT-Bibliothek | Impressum | Datenschutz

Challenges in Deep Learning Based Forecasting of Time Series with Calendar-driven Periodicities

Heidrich, Benedikt 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

Throughout history, forecasting has been crucial across various civilizations, influencing imagination and critical decisions. In contemporary times, it has become indispensable across diverse domains, where accurate predictions drive decision-making --- e.g., in the operation of the electrical grid or traffic planning. However, forecasting is still associated with various challenges. Thus, the present thesis delves into neural network-based time series forecasting challenges, focusing on four aspects: missing data, missing scenarios, concept drifts, and periodicities.

This thesis aims to solve these challenges using conditional generative models or profile-based methods. Conditional generative models are the main component of the proposed approaches to face the missing scenario challenge and the challenge of a small training data size. Moreover, a conditional generative model is also the main component of the proposed forecaster used for energy peak load forecasting in the BigDEAL challenge.
The proposed profile-based methods are promising in handling concept drift and support neural networks in time series forecasting. In particular, they can be supportive since they cover specific aspects of the time series that need not be captured by the machine learning model anymore if the profiles are integrated with the machine learning models. ... mehr


Volltext §
DOI: 10.5445/IR/1000171463
Veröffentlicht am 11.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Hochschulschrift
Publikationsdatum 11.06.2024
Sprache Englisch
Identifikator KITopen-ID: 1000171463
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xvi, 166 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Informatik (INFORMATIK)
Institut Institut für Automation und angewandte Informatik (IAI)
Prüfungsdatum 04.12.2023
Schlagwörter Neural Network,Forecasting,Time Series
Referent/Betreuer Hagenmeyer, Veit
Hong, Tao
Mikut, Ralf
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page