KIT | KIT-Bibliothek | Impressum | Datenschutz

Probabilistic Prediction of Energy Demand and Driving Range for Electric Vehicles with Federated Learning

Thorgeirsson, Adam Thor ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract:

Connected vehicles and backend infrastructures comprise a distributed system, in which large amounts of data are generated. Machine learning algorithms can use this data to improve predictions and forecasts of future events. However, the distribution of the data is a challenge.
Today's drivers of battery electric vehicles must deal with limited driving range in a sparse charging infrastructure. An accurate prediction of energy demand and driving range is therefore important and enables reliable routing and charge planning applications.

Machine learning algorithms use a large amount of data and have high computational requirements. A traditional placement of the software within a vehicle's electronic control unit (ECU) could lead to high latencies and thus detrimental to user experience. High latencies can be prevented with intelligent distribution of the algorithm parts over the vehicle fleet and backend. A distributed system should take the uncertainty of data and predictions into account. Predictive uncertainty can be regarded directly with the use of probabilistic machine learning algorithms.

In this dissertation, distributed and probabilistic prediction algorithms as well as system architectures for distributed systems are investigated. ... mehr


Volltext §
DOI: 10.5445/IR/1000171536
Veröffentlicht am 14.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Hochschulschrift
Publikationsdatum 14.06.2024
Sprache Englisch
Identifikator KITopen-ID: 1000171536
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xix, 155 S-
Art der Arbeit Dissertation
Fakultät Fakultät für Maschinenbau (MACH)
Institut Institut für Fahrzeugsystemtechnik (FAST)
Prüfungsdatum 25.04.2024
Schlagwörter driving range, electric vehicles, probabilistic predictions, federated learning, connected vehicles, probabilistic machine learning
Referent/Betreuer Gauterin, Frank
Sax, Eric
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page