KIT | KIT-Bibliothek | Impressum | Datenschutz

Additive manufacturing of novel complex tungsten components via electron beam melting: Basic properties and evaluation of the high heat flux behavior

Antusch, Steffen 1; Klein, Alexander 1; Baumgärtner, Siegfried 2; Bonnekoh, Carsten 2; Böswirth, Bernd; Dorow-Gerspach, Daniel; Dietrich, Stefan ORCID iD icon 1; Ehrhardt, Marco 3; Ghidersa, Bradut Eugen 4; Greuner, Henri; Guttmann, Markus ORCID iD icon 3; Hanemann, Thomas ORCID iD icon 1; Jung, Judith 2; Konrad, Joachim 5; Rieth, Michael ORCID iD icon 2
1 Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP), Karlsruher Institut für Technologie (KIT)
3 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
4 Institut für Neutronenphysik und Reaktortechnik (INR), Karlsruher Institut für Technologie (KIT)
5 Technikhaus (TEC), Karlsruher Institut für Technologie (KIT)

Abstract:

The basic principle of electron beam melting (EBM) technology is the additive generation of structures by the selective melting of metal powder layer by layer with an electron beam under vacuum conditions. The cooling rate of the EBM process can be reduced drastically by increasing the temperature of the powder bed to avoid the formation of solidification cracks by brittle materials such as tungsten (W). This refractory metal is a promising candidate as plasma facing material for future fusion reactors. The selection of tungsten is owing to its physical properties such as the melting point of 3420 °C, the high strength and high thermal conductivity, the low thermal expansion and low erosion rate. Disadvantages are the low ductility, and fracture toughness at room temperature. Furthermore, the manufacturing by mechanical machining, such as milling and turning, is extremely cost and time consuming. An interesting alternative process route to conventional manufacturing technologies is EBM. It allows the near-net shape fabrication of prototype structures with geometrical freedom and has proven its capability for mass production by the manufacturing of hip prostheses made of titanium.
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000171556
Veröffentlicht am 12.06.2024
Originalveröffentlichung
DOI: 10.1016/j.nme.2024.101683
Scopus
Zitationen: 2
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP)
Institut für Mikrostrukturtechnik (IMT)
Institut für Neutronenphysik und Reaktortechnik (INR)
Technikhaus (TEC)
Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2024
Sprache Englisch
Identifikator ISSN: 2352-1791
KITopen-ID: 1000171556
HGF-Programm 31.13.05 (POF IV, LK 01) Neutron-Resistant Structural Materials
Weitere HGF-Programme 38.01.02 (POF IV, LK 01) Materials and Interfaces
Erschienen in Nuclear Materials and Energy
Verlag Elsevier
Band 39
Seiten Art.-Nr.: 101683
Vorab online veröffentlicht am 28.05.2024
Schlagwörter Additive manufacturing, Refractory metal, Tungsten, Electron beam melting, Plasma-facing unit, Mock-up, Copper cooling structure, Copper melt infiltration, Selective laser melting, Computational fluid dynamic calculations, Mechanical testing, High heat flux testing
Nachgewiesen in Web of Science
Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page