KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhancing the Quality of MOF Thin Films for Device Integration Through Machine Learning: A Case Study on HKUST‐1 SURMOF Optimization

Pilz, Lena 1; Koenig, Meike ORCID iD icon 1; Schwotzer, Matthias ORCID iD icon 1; Gliemann, Hartmut 1; Wöll, Christof 1; Tsotsalas, Manuel ORCID iD icon 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

Metal–organic Frameworks (MOFs), especially as thin films, are increasingly
recognized for their potential in device integration, notably in sensors and
photo detectors. A critical factor in the performance of many MOF-based
devices is the quality of the MOF interfaces. Achieving MOF thin films with
smooth surfaces and low defect densities is essential. Given the extensive
parameter space governing MOF thin film deposition, the use of machine
learning (ML) methods to optimize deposition conditions is highly beneficial.
Combined with robotic fabrication, ML can more effectively explore this space
than traditional methods, simultaneously varying multiple parameters to
improve optimization efficiency. Importantly, ML can provide deeper insights
into the synthesis of MOF thin films, an essential area of research. This study
focuses on refining an HKUST-1 SURMOF (surface-mounted MOF) to achieve
minimal surface roughness and high crystallinity, including a quantitative
analysis of the importance of the various synthesis parameters. Using the
SyCoFinder ML technique, thin film surface quality is markedly enhanced in
just three generations created by a genetic algorithm, covering 30 distinct
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000171629
Veröffentlicht am 13.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2024
Sprache Englisch
Identifikator ISSN: 1616-301X, 1616-3028
KITopen-ID: 1000171629
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Advanced Functional Materials
Verlag Wiley-VCH Verlag
Band 34
Heft 44
Seiten Art.-Nr.: 202404631
Vorab online veröffentlicht am 03.06.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page