KIT | KIT-Bibliothek | Impressum | Datenschutz

6D Pose Estimation on Point Cloud Data through Prior Knowledge Integration: A Case Study in Autonomous Disassembly

Wu, Chengzhi 1; Fu, Hao 1; Kaiser, Jan-Philipp 2; Barczak, Erik Tabuchi 3; Pfrommer, Julius; Lanza, Gisela 2; Heizmann, Michael 3; Beyerer, Jürgen 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)
2 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)
3 Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie (KIT)

Abstract:

The accurate estimation of 6D pose remains a challenging task within the computer vision domain, even when utilizing 3D point cloud data. Conversely, in the manufacturing domain, instances arise where leveraging prior knowledge can yield advancements in this endeavor. This study focuses on the disassembly of starter motors to augment the engineering of product life cycles. A pivotal objective in this context involves the identification and 6D pose estimation of bolts affixed to the motors, facilitating automated disassembly within the manufacturing workflow. Complicating matters, the presence of occlusions and the limitations of single-view data acquisition, notably when motors are placed in a clamping system, obscure certain portions and render some bolts imperceptible. Consequently, the development of a comprehensive pipeline capable of acquiring complete bolt information is imperative to avoid oversight in bolt detection. In this paper, employing the task of bolt detection within the scope of our project as a pertinent use case, we introduce a meticulously devised pipeline. This multi-stage pipeline effectively captures the 6D information with regard to all bolts on the motor, thereby showcasing the effective utilization of prior knowledge in handling this challenging task. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000171651
Veröffentlicht am 14.06.2024
Originalveröffentlichung
DOI: 10.1016/j.procir.2024.01.028
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Industrielle Informationstechnik (IIIT)
Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2212-8271
KITopen-ID: 1000171651
Erschienen in Procedia CIRP
Verlag Elsevier
Band 122
Seiten 193 – 198
Bemerkung zur Veröffentlichung Part of special issue: 31st CIRP Conference on Life Cycle Engineering
Vorab online veröffentlicht am 07.05.2024
Schlagwörter Remanufacturing, 6D pose estimation, Prior knowledge utilization, 3D point cloud, Machine learning
Nachgewiesen in Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page