KIT | KIT-Bibliothek | Impressum | Datenschutz

Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers for non-stationary and nonlinear simulations on arbitrary meshes

Würth, Tobias ORCID iD icon 1; Freymuth, Niklas 2; Zimmerling, Clemens ORCID iD icon 1; Neumann, Gerhard 2; Kärger, Luise ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)
2 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Engineering components must meet increasing technological demands in ever shorter development cycles. To face these challenges, a holistic approach is essential that allows for the concurrent development of part design, material system and manufacturing process. Current approaches employ numerical simulations, which quickly becomes computation-intensive, especially for iterative optimization. Data-driven machine learning methods can be used to replace time- and resource-intensive numerical simulations. In particular, MeshGraphNets (MGNs) have shown promising results. They enable fast and accurate predictions on unseen mesh geometries while being fully differentiable for optimization. However, these models rely on large amounts of expensive training data, such as numerical simulations. Physics-informed neural networks (PINNs) offer an opportunity to train neural networks with partial differential equations instead of labeled data, but have not yet been extended to handle time-dependent simulations of arbitrary meshes. This work introduces PI-MGNs, a hybrid approach that combines PINNs and MGNs to quickly and accurately solve non-stationary and nonlinear partial differential equations (PDEs) on arbitrary meshes. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000171666/pub
Veröffentlicht am 13.12.2024
Preprint §
DOI: 10.5445/IR/1000171666
Veröffentlicht am 17.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.09.2024
Sprache Englisch
Identifikator ISSN: 0045-7825
KITopen-ID: 1000171666
Erschienen in Computer Methods in Applied Mechanics and Engineering
Verlag Elsevier
Band 429
Seiten Artkl.Nr.: 117102
Vorab online veröffentlicht am 15.06.2024
Schlagwörter Graph neural network, Machine learning, Physics-based simulation, Surrogate model, Partial differential equations
Nachgewiesen in Dimensions
Scopus
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page