KIT | KIT-Bibliothek | Impressum | Datenschutz

Identification of reaction rate parameters from uncertain spatially distributed concentration data using gradient-based PDE constrained optimization

Ito, Shota 1; Jeßberger, Julius 2; Simonis, Stephan ORCID iD icon 2; Bukreev, Fedor 1; Kummerländer, Adrian 2; Zimmermann, Alexander; Thäter, Gudrun 2; Pesch, Georg R.; Thöming, Jorg; Krause, Mathias J. 2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

A promising approach to quantify reaction rate parameters is to formulate and solve inverse problems by
minimizing the deviation between simulation and measurement. One major challenge may become the non-
uniqueness of the recovered parameters due to the ill-posed problem formulation, which requires sophisticated
approaches such as regularization. This study investigates the feasibility of using spatially distributed reference
data, i.e., concentration distributions of reactive flows, which could be obtained by magnetic resonance imaging
(MRI), instead of isolated points or integral values to recover reaction rate parameters. We propose a combined
framework of computational fluid dynamics (CFD) and gradient-based optimization methods, which minimizes
the difference between the simulated concentration distribution and a given data set by automatic iterative
parameter adjustments. The forward problem is formulated as a coupled system of reaction-advection-diffusion
equations (RADE), which is solved by the lattice Boltzmann method (LBM). Therefore, a system of non-linear
partial differential equations (PDE) acts as optimization constraints, limiting the possible outcomes of the
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000171703
Veröffentlicht am 18.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.08.2024
Sprache Englisch
Identifikator ISSN: 0898-1221, 0097-4943, 1873-7668
KITopen-ID: 1000171703
Erschienen in Computers and Mathematics with Applications
Verlag Elsevier
Band 167
Seiten 249 – 263
Vorab online veröffentlicht am 28.05.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page