KIT | KIT-Bibliothek | Impressum | Datenschutz

How Does Feature Engineering Impact UAV-based Multispectral Semantic Segmentation? An RGB and Thermal Image Ablation Study

Vollmer, Elena ORCID iD icon 1; Benz, Mishal 2; Kahn, James ORCID iD icon 2; Klug, Leon 1; Volk, Rebekka ORCID iD icon 1; Schultmann, Frank ORCID iD icon 1; Götz, Markus ORCID iD icon 2
1 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)
2 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

While deep learning (DL) has become indispensable for standard computer vision tasks, the growing availability of sophisticated sensors has fuelled interest in applications using more unconventional data, such as thermal infrared (TIR) imagery. Thermography is a valuable tool for numerous heat-related applications, although the resulting images are particularly susceptible to noise, artefacts, and low resolution. Publications applying DL to multispectral data focus on enhancing existing models to tackle quality issues without considering the imagery itself.
This work therefore explores how manual feature engineering can influence model performance when transferring prevalent architectures to combined red green blue (RGB) and TIR imagery. Utilising the popular U-Net model and a novel unmanned aerial vehicle (UAV)-based dataset from two German cities, we address the common remote sensing task of multi-class semantic segmentation – specifically thermal urban feature detection to support energy-related maintenance. A comprehensive ablation study of various filters, channel constellations, and image sizes helps investigate how loss of information about i.e. ... mehr


Volltext §
DOI: 10.5445/IR/1000171759
Veröffentlicht am 19.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Scientific Computing Center (SCC)
Publikationstyp Poster
Publikationsdatum 12.06.2024
Sprache Englisch
Identifikator KITopen-ID: 1000171759
Veranstaltung Helmholtz Artificial Intelligence Conference (Helmholtz AI 2024), Düsseldorf, Deutschland, 12.06.2024 – 14.06.2024
Projektinformation AI4EOSC (EU, EU 9. RP, 101058593)
Schlagwörter Semantic segmentation, Multispectral remote sensing imagery, Feature engineering
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page