KIT | KIT-Bibliothek | Impressum | Datenschutz

Modeling of martensitic phase transformation accounting for inertia effects

Liu, Xiaoying ORCID iD icon 1; Schneider, Daniel ORCID iD icon 1; Reder, Martin ORCID iD icon 2; Hoffrogge, Paul W. ORCID iD icon 1; Nestler, Britta 1,2
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)

Abstract:

As a diffusionless phase transformation, martensite evolves at the speed close to sound, with its kinetics and morphology dominated by the mechanical energy. However, the mechanism of martensitic phase transformation with the consideration of inertia is rarely investigated. This paper presents a multiphase-field model, where the transformation strain in martensite performs as the mechanical wave source, and in return the kinetic energy contributes to the driving force for phase transformation. As a result, the mechanical fields, i.e., the stress and the velocity, are derived according to the increment of the transformation strain. The propagation direction of the mechanical wave is corrected by considering the growth of the martensitic nucleus. With the 1D and 2D analysis, as well as the comparison against 2D static case, the mechanism of martensitic phase transformation is investigated, and the advantage of mechanical model accounting for inertia effects is illustrated.


Verlagsausgabe §
DOI: 10.5445/IR/1000171999
Veröffentlicht am 25.06.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2024
Sprache Englisch
Identifikator ISSN: 0020-7403
KITopen-ID: 1000171999
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in International Journal of Mechanical Sciences
Verlag Elsevier
Band 278
Seiten Art.-Nr.: 109443
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page