KIT | KIT-Bibliothek | Impressum | Datenschutz

Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements

Janák, Josef 1; Reiß, Markus
1 Institut für Stochastik (STOCH), Karlsruher Institut für Technologie (KIT)

Abstract:

For the stochastic heat equation with multiplicative noise we consider the problem of estimating the diffusivity parameter in front of the Laplace operator. Based on local observations in space, we first study an estimator, derived in Altmeyer and Reiß (2021) for additive noise. A stable central limit theorem shows that this estimator is consistent and asymptotically mixed normal. By taking into account the quadratic variation, we propose two new estimators. Their limiting distributions exhibit a smaller (conditional) variance and the last estimator also works for vanishing noise levels. The proofs are based on local approximation results to overcome the intricate nonlinearities and on a stable central limit theorem for stochastic integrals with respect to cylindrical Brownian motion. Simulation results illustrate the theoretical findings.


Verlagsausgabe §
DOI: 10.5445/IR/1000172003
Veröffentlicht am 25.06.2024
Originalveröffentlichung
DOI: 10.1016/j.spa.2024.104385
Scopus
Zitationen: 3
Web of Science
Zitationen: 3
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Stochastik (STOCH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2024
Sprache Englisch
Identifikator ISSN: 0304-4149
KITopen-ID: 1000172003
Erschienen in Stochastic Processes and their Applications
Verlag Elsevier
Band 175
Seiten Art.-Nr.: 104385
Nachgewiesen in Scopus
Web of Science
OpenAlex
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page