KIT | KIT-Bibliothek | Impressum | Datenschutz

Knowledge-Guided Learning of Temporal Dynamics and its Application to Gas Turbines

Bielski, Pawel ORCID iD icon 1; Eismont, Aleksandr; Bach, Jakob ORCID iD icon 1; Leiser, Florian ORCID iD icon; Kottonau, Dustin ORCID iD icon 2; Böhm, Klemens 1
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)
2 Institut für Technische Physik (ITEP), Karlsruher Institut für Technologie (KIT)

Abstract:

Modeling dynamical systems is a fundamental task in scientific and engineering fields, often accomplished by applying theory-based models with mathematical equations. Yet, in cases where these equations cannot be established or parameterized properly, theory-based models are not applicable. Instead, a viable alternative is to learn the system dynamics directly from data, for example with deep learning models. However, traditional deep learning models often produce physically inconsistent results and struggle to generalize to unseen data, especially when training data is limited. One solution to this shortcoming is knowledge-guided deep learning, leveraging prior knowledge about the expected behavior of a dynamical system. In this work, we identify and formalize permissible system states, a novel type of prior knowledge that is often available for systems in the context of temporal dynamics modeling. This prior knowledge describes dynamic states that the system is allowed to take during its operation. We propose a knowledge-guided multi-state constraint to encode this type of prior knowledge through a loss function, making it applicable to any deep learning model. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000172346
Veröffentlicht am 10.07.2024
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Institut für Technische Physik (ITEP)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 06.2024
Sprache Englisch
Identifikator ISBN: 979-84-00-70480-2
KITopen-ID: 1000172346
Erschienen in 15th ACM International Conference on Future and Sustainable Energy Systems, Singapur, 4th-7th June 2024
Veranstaltung 15th ACM International Conference on Future and Sustainable Energy Systems (e-Energy 2024), Singapur, Singapur, 04.06.2024 – 07.06.2024
Verlag Association for Computing Machinery (ACM)
Seiten 279–290
Vorab online veröffentlicht am 31.05.2024
Externe Relationen Forschungsdaten/Software
Schlagwörter Dynamical Systems, Dynamics Modeling, Micro Gas Turbine, Domain Knowledge, Physics-Guided Deep Learning
Nachgewiesen in Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page