KIT | KIT-Bibliothek | Impressum | Datenschutz

Making Federated Learning Accessible to Scientists: The AI4EOSC Approach

Sáinz-Pardo Díaz, Judith; Heredia Canales, Andrés; Heredia Cachá, Ignacio; Tran, Viet; Nguyen, Giang; Alibabaei, Khadijeh ORCID iD icon 1; Obregón Ruiz, Marta; Rebolledo Ruiz, Susana; López García, Álvaro
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Access to computing resources is a critical requirement for researchers in a wide diversity of areas. This has become even more important with the rise of artificial intelligence techniques through the training of machine learning and deep learning models. In this sense, the AI4EOSC project aims to respond to this need by delivering an enhanced set of advanced services and tools for the development of artificial intelligence, machine and deep models, such as federated learning, in the European Open Science Cloud (EOSC). Federated learning is a technology in the field of privacy-preserving machine learning techniques that has revolutionized the current state of the art, evolving from classical centralized approaches to allow training models in a decentralized way, without sharing raw data. In this work, we present the production implementation of a federated learning system based on the Flower framework that allows users, without a technological background, to exploit this technique, performing federated learning training within the AI4EOSC platform. The objective is to be able to train this type of architecture in an intuitive way; for this purpose, a user-friendly dashboard has been implemented, whose development will be reviewed. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000172368
Veröffentlicht am 11.07.2024
Originalveröffentlichung
DOI: 10.1145/3658664.3659642
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 24.06.2024
Sprache Englisch
Identifikator ISBN: 979-84-00-70637-0
KITopen-ID: 1000172368
Erschienen in IH&MMSec '24: Proceedings of the 2024 ACM Workshop on Information Hiding and Multimedia Security
Veranstaltung ACM Workshop on Information Hiding and Multimedia Security (IH&MMSec 2024), Baiona, Spanien, 24.06.2024 – 26.06.2024
Verlag Association for Computing Machinery (ACM)
Seiten 253 – 264
Schlagwörter federated learning, privacy-preserving, open science, software development, artificial intelligence
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page