KIT | KIT-Bibliothek | Impressum | Datenschutz

Computer vision-based excavator bucket fill estimation using depth map and faster R-CNN

Helian, Bobo 1; Huang, Xiaoqian 1; Yang, Meng; Bian, Yongming; Geimer, Marcus ORCID iD icon 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

Excavators are crucial in the construction industry, and developing autonomous excavator systems is vital for enhancing productivity and reducing the reliance on manual labor. Accurate estimation of the volume of the excavator bucket fill is key for monitoring and evaluating system automation performance. This paper presents the use of 2D depth maps as input to a Faster Region Convolutional Neural Network (Faster R-CNN) deep learning model for bucket volume estimation. This structure enables high estimation accuracy while maintaining fast processing speed. An excavator operation monitoring test bench was established, and the datasets used in the study were self-generated for training. A loss function is proposed, combining Cross Entropy with Root Mean Squared Error to improve generalization and precision. Comparative results indicate that the proposed approach achieves 96.91% accuracy in fill factor estimation and predicts in real-time at about 10 fps, highlighting its potential for practical use in automated excavator operations.


Verlagsausgabe §
DOI: 10.5445/IR/1000172614
Veröffentlicht am 22.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
KIT-Bibliothek (BIB)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2024
Sprache Englisch
Identifikator ISSN: 0926-5805, 1872-7891
KITopen-ID: 1000172614
Erschienen in Automation in Construction
Verlag Elsevier
Band 166
Seiten Art.-Nr.: 105592
Vorab online veröffentlicht am 04.07.2024
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page