KIT | KIT-Bibliothek | Impressum | Datenschutz

Neural Architecture Search for Highly Bespoke Robust Printed Neuromorphic Circuits

Pal, Priyanjana ORCID iD icon 1,2; Zhao, Haibin ORCID iD icon 1,3; Gheshlaghi, Tara 1,2; Hefenbrock, Michael 1,3; Beigl, Michael ORCID iD icon 1,3; Tahoori, M. B. 1,2
1 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)
2 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)
3 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The market demand for next-generation flexible electronics is experiencing a significant upsurge, particularly in cost-sensitive consumer applications like smart packaging and smart bandages. These products are beyond the reach of traditional silicon-based electronics due to their high production cost and rigid form factor. Printed electronics (PE), with its adaptable and ultra-low-cost solutions, essentially meet the unique needs of these emerging application areas. This work presents a novel approach using an evolutionary algorithm (EA) to design highly bespoke printed analog neuromorphic circuits (pNCs) offering robustness against variability inherent in the printing process. By leveraging this algorithm and designing robust activation circuits, not only the resistances (weights) in the crossbar and parameters in the activation circuits, but also the types of nonlinear circuits (i.e., functional forms of activation functions) as well as the circuit topologies (neural architecture) can be learned to enhance the circuit robustness against printing variations. Experiments on 13 benchmark datasets demonstrate that, compared to the baseline, the proposed methodology can further outperform the normalized classification error rate by ≈ 55.38% and ≈ 25.11% under high-precision (±5%) and low-precision (±10%) printing scenarios, respectively. ... mehr


Volltext §
DOI: 10.5445/IR/1000172645
Veröffentlicht am 19.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Institut für Telematik (TM)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 31.10.2024
Sprache Englisch
Identifikator KITopen-ID: 1000172645
Verlag ACM Digital Library
Bemerkung zur Veröffentlichung 43. ACM/IEEE International Conference on Computer-Aided Design (ICCAD), New Jersey, USA, 27.10.2024-31.10.2024
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page