KIT | KIT-Bibliothek | Impressum | Datenschutz

On the role of hydrogen inhibition in gas-phase methane pyrolysis for carbon capture and hydrogen production in a tubular flow reactor

Çelik, Ahmet 1; Shirsath, Akash Bhimrao 1; Syla, Fatjon 1; Müller, Heinz 1; Lott, Patrick ORCID iD icon 1; Deutschmann, Olaf ORCID iD icon 1
1 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)

Abstract:

The thermal pyrolysis of methane enables economically competitive hydrogen production without direct CO2 emissions. Although several mechanisms for the process have already been proposed, especially the inhibitory effect of hydrogen as well as the process operation at increased pressure have not yet been fully clarified. In this context, the present work investigates the influence of hydrogen and argon as inert gas on product composition, methane conversion, and hydrogen selectivity as a function of temperature (1000 °C to 1600 °C), residence time (1 s to 7 s), molar dilution ratio (1:1–4:1), and pressure (1 bar to 4 bar) in a high-temperature reactor. Within the scope of this work, total differences in CH4 conversion of up to 50 % could be observed at equal process parameters between an argon and hydrogen dilution, underlining the potential impact of diluents on the overall process. Moreover, increasing the pressure from 1 bar to 4 bar reduces the formation of byproducts significantly for both H2 and Ar as diluent, however, with different mechanistic characteristics. The most remarkable difference is the formation of propylene that exclusively takes place in argon-diluted reaction gas mixtures. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000172804
Veröffentlicht am 25.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Chemie und Polymerchemie (ITCP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2024
Sprache Englisch
Identifikator ISSN: 0165-2370
KITopen-ID: 1000172804
Erschienen in Journal of Analytical and Applied Pyrolysis
Verlag Elsevier
Band 181
Seiten Art.-Nr.: 106628
Vorab online veröffentlicht am 03.07.2024
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page