KIT | KIT-Bibliothek | Impressum | Datenschutz

Forecasting Electric Vehicle Charging Behavior in Workplace Charging Infrastructure with Limited Privacy-Restricted Real Data

Stein, Alexander ORCID iD icon 1; Beichter, Sebastian ORCID iD icon 2; Hage, Jacek 3; Beichter, Maximilian 3; Schwarz, Bernhard ORCID iD icon 3; Waczowicz, Simon ORCID iD icon 2; Hiller, Marc 1; Hagenmeyer, Veit ORCID iD icon 3; Munzke, Nina ORCID iD icon 1; Mikut, Ralf ORCID iD icon 2
1 Elektrotechnisches Institut (ETI), Karlsruher Institut für Technologie (KIT)
2 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
3 Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Workplace Charging Stations (CSs) are well-suited to improve grid stability by scheduling the charging process over the parking duration and thereby reducing the peak load. Therefore, the energy demand and parking duration of single charging sessions must be known as well as the future occupancy of the CS. Since user IDs are often unknown for privacy reasons, this paper investigates how these parameters can be predicted for future charging events. The charging behavior is examined for its characteristic features, such as location, arrival, and departure times. First, calendar, weather, lag and CS-specific features are implemented and used to train nine different machine-learning algorithms. For the observed data, the Random Forest Regressor yields the best results for parking duration and energy demand. For parking duration, a 33.7% improvement in Mean Absolute Percentage Error (MAPE) over the baseline (the mean parking duration) can be achieved. The MAPE of the parking duration forecast is 71.0% and for the energy demand, it is 84.0% which leads to the conclusion that without the knowledge of user IDs predicting the charging behavior of users is possible only to a limited extent.


Postprint §
DOI: 10.5445/IR/1000172869
Veröffentlicht am 26.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Elektrotechnisches Institut (ETI)
Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 19.06.2024
Sprache Englisch
Identifikator ISBN: 979-83-503-1766-4
KITopen-ID: 1000172869
HGF-Programm 37.12.02 (POF IV, LK 01) Design,Operation & Digitalization of the Future Energy Grids
Weitere HGF-Programme 37.12.03 (POF IV, LK 01) Smart Areas and Research Platforms
Erschienen in 2024 IEEE Transportation Electrification Conference and Expo (ITEC)
Veranstaltung IEEE Transportation Electrification Conference and Expo Asia-Pacific (2024), Xi'an, China, 10.10.2024 – 13.10.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 7 S.
Projektinformation SKALE (BMWK, 01MV19004D)
Nachgewiesen in Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page