KIT | KIT-Bibliothek | Impressum | Datenschutz

Surface energies control the anisotropic growth of β -Ni(OH)$_2$ nanoparticles in stirred reactors

Streichhan, Nick 1; Goonetilleke, Damian 2; Li, Hongjiao 3; Soleymanibrojeni, Mohammad 3; Hoffrogge, Paul W. ORCID iD icon 1; Schneider, Daniel ORCID iD icon 1; Nestler, Britta 1; Wenzel, Wolfgang 3
1 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)
3 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Nickel hydroxides are an important family of electrode materials in the field of batteries and electrochemical energy storage. Two polymorphs, -Ni(OH)$_2$ and -Ni(OH)$_2$ have been identified, with intermediate structures also reported. However, the synthesis of the -phase precipitants that are ideal for electrochemical applications is not trivial. The growth and morphology of the final products can widely vary with the pH. The electrochemical performance of the -phase is sensitive to its structure and morphology, which are also sensitive to the reaction conditions. In order to better understand the initial nucleation, growth and morphological evolution of the -phase, we present a combined experimental and theoretical study including a multiscale phase-field model for the evolution of the morphology of -Ni(OH)$_2$ . Surface indices and energies for the phase-field modeling were obtained from density functional calculations (DFT). The developed phase-field model can reproduce the growth of -Ni(OH)$_2$ phase in different conditions. The model shows that the basal planes of -Ni(OH)$_2$ can grow in high pH but at the same time its growth is limited by other high energy prismatic surfaces.


Verlagsausgabe §
DOI: 10.5445/IR/1000172918
Veröffentlicht am 19.08.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2024
Sprache Englisch
Identifikator ISSN: 2468-0230
KITopen-ID: 1000172918
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Weitere HGF-Programme 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Erschienen in Surfaces and Interfaces
Verlag Elsevier
Band 51
Seiten 104736
Vorab online veröffentlicht am 06.07.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page