KIT | KIT-Bibliothek | Impressum | Datenschutz

MLP-HAR: Boosting Performance and Efficiency of HAR Models on Edge Devices with Purely Fully Connected Layers

Zhou, Yexu 1,2; King, Tobias 1,2; Zhao, Haibin ORCID iD icon 1,2; Huang, Yiran ORCID iD icon 1,2; Riedel, Till ORCID iD icon 1,2; Beigl, Michael ORCID iD icon 1,2
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)
2 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Neural network models have demonstrated exceptional performance in wearable human activity recognition (HAR) tasks. How-ever, the increasing size or complexity of HAR models significantly impacts their deployment on wearable devices with limited computational power. In this study, we introduce a novel HAR model architecture named Multi-Layer Perceptron-HAR (MLP-HAR), which contains solely fully connected layers. This model is specifically designed to address the unique characteristics of HAR tasks, such as multi-modality interaction and global temporal information. The MLP-HAR model employs fully connected layers that alternately operate along the modality and temporal dimensions, enabling multiple fusions of information across these dimensions. Our pro- posed model demonstrates comparable performance with other state-of-the-art HAR models on six open-source datasets, while utilizing significantly fewer learnable parameters and exhibiting lower model complexity. Specifically, the complexity of our model is at least ten times smaller than that of the TinyHAR model and several hundred times smaller than the benchmark model DeepConvLSTM. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000172961
Veröffentlicht am 30.07.2024
Originalveröffentlichung
DOI: 10.1145/3675095.3676624
Scopus
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 05.10.2024
Sprache Englisch
Identifikator ISBN: 979-8-4007-1059-9
KITopen-ID: 1000172961
Erschienen in ISWC '24: Proceedings of the 2024 ACM International Symposium on Wearable Computers. Ed.: V. Kostakos
Veranstaltung ACM international joint conference on Pervasive and Ubiquitous Computing (UbiComp 2024), Melbourne, Australien, 05.10.2024 – 09.10.2024
Verlag Association for Computing Machinery (ACM)
Seiten 133-139
Vorab online veröffentlicht am 29.07.2024
Nachgewiesen in OpenAlex
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page