KIT | KIT-Bibliothek | Impressum | Datenschutz

Rethinking Resource Competition in Multi-Task Learning: from Shared Parameters to Shared Representation

Mao, Dayou; Chen, Yuhao; Wu, Yifan; Gilles, Maximilian 1; Wong, Alexander
1 Institut für Fördertechnik und Logistiksysteme (IFL), Karlsruher Institut für Technologie (KIT)

Abstract:

The core idea of Multi-Task Learning (MTL) is to develop neural networks with a shared feature extraction backbone and multiple prediction heads, each capable of inferring a different task simultaneously. Parameters in the backbone contribute to all tasks while those in the prediction heads contribute to only one or fewer tasks. Challenges arise when multiple tasks compete for resource. Existing methods focus on resource competition in shared parameters and proposed explanatory factors of task conflicts, task dominance, and gradient stability. However the fundamental nature of MTL is still understudied. In this paper, instead of following the existing methodology research directions, we carry out large-scale empirical study and provide deeper insight on understanding MTL. In particular, instead of focusing on resource competition in the shared parameters in the backbone, we shift our attention to resource competition in the backbone output, which is the embedded representation that is shared by all prediction heads. We show that the existing explanatory factors display weak causal relationship with model performance. We propose a novel measurement, which we term Feature Disentanglement, and show that understanding MTL problems from the perspective of how the shared representation is leveraged by different prediction heads, is a more faithful and reliable way than that from the perspective of how supervision signals from different tasks are interfering in the shared parameters. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000172984
Veröffentlicht am 09.09.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fördertechnik und Logistiksysteme (IFL)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2169-3536
KITopen-ID: 1000172984
Erschienen in IEEE Access
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 12
Seiten 128717–128728
Vorab online veröffentlicht am 16.07.2024
Schlagwörter Attention mechanism, computer vision, deep learning, explainable AI, machine learning, multi-objective optimization, multi-task learning, neural networks, representation, robotics
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page