KIT | KIT-Bibliothek | Impressum | Datenschutz

A high‐order numerical method for solving non‐periodic scattering problems in three‐dimensional bi‐periodic structures

Arens, Tilo 1; Shafieeabyaneh, Nasim 1; Zhang, Ruming
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we focus on scattering of non-periodic incident fields in three-dimensional bi-periodic structures, as they can not be solved by the classical methods used for the quasi-periodic scattering problems. To solve such non-periodic scattering problems, the Floquet–Bloch transform, which decomposes the unbounded problem into a family of periodic problems in a bounded unit cell, has been applied together with a numerical method by Lechleiter and Zhang (2017). However, its theoretical result indicates that the computational order is too low. Hence, our aim is to propose a high-order numerical approach by using the Floquet–Bloch transform. To this end, the first crucial part is to analyze the regularity of the transformed solution with respect to the Floquet parameter. The second challenging part is to propose a high-order tailor-made quadrature method adapted to singularities of the transformed solution formed by a finite number of circular arcs. Afterwards, we obtain the error estimation of the proposed numerical approach. Eventually, the accuracy and efficiency of the mentioned approach are revealed by several numerical examples.


Verlagsausgabe §
DOI: 10.5445/IR/1000173024
Veröffentlicht am 30.07.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2024
Sprache Englisch
Identifikator ISSN: 0044-2267, 1521-4001
KITopen-ID: 1000173024
Erschienen in ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Verlag John Wiley and Sons
Band 104
Heft 9
Seiten Art.-Nr.: e202300650
Vorab online veröffentlicht am 21.07.2024
Nachgewiesen in Web of Science
Scopus
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page