KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards few-shot reinforcement learning in particle accelerator control

Hirlaender, Simon; Lamminger, Lukas; Pochaba, Sabrina; Santamaria Garcia, Andrea ORCID iD icon 1; Xu, Chenran ORCID iD icon 2; Scomparin, Luca ORCID iD icon 3; Kaiser, J.; Kain, Verena
1 Laboratorium für Applikationen der Synchrotronstrahlung (LAS), Karlsruher Institut für Technologie (KIT)
2 Institut für Beschleunigerphysik und Technologie (IBPT), Karlsruher Institut für Technologie (KIT)
3 Institut für Prozessdatenverarbeitung und Elektronik (IPE), Karlsruher Institut für Technologie (KIT)

Abstract:

This paper addresses the automation of particle accelerator control through reinforcement learning (RL). It highlights the potential to increase reliable performance, especially in light of new diagnostic tools and the increasingly complex variable schedules of specific accelerators. We focus on the physics simulation of the AWAKE electron line, an ideal platform for performing in-depth studies that allow a clear distinction between the problem and the performance of different algorithmic approaches for accurate analysis. The main challenges are the lack of realistic simulations and partially observable environments. We show how effective results can be achieved through meta-reinforcement learning, where an agent is trained to quickly adapt to specific real-world scenarios based on prior training in a simulated environment with variable unknowns. When suitable simulations are lacking or too costly, a model-based method using Gaussian processes is used for direct training in a few shots only. The work opens new avenues for implementing control automation in particle accelerators, significantly increasing their efficiency and adaptability.


Verlagsausgabe §
DOI: 10.5445/IR/1000173441
Veröffentlicht am 15.08.2024
Originalveröffentlichung
DOI: 10.18429/JACoW-IPAC2024-TUPS60
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Beschleunigerphysik und Technologie (IBPT)
Institut für Prozessdatenverarbeitung und Elektronik (IPE)
Laboratorium für Applikationen der Synchrotronstrahlung (LAS)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 05.2024
Sprache Englisch
Identifikator ISBN: 978-3-95450-247-9
ISSN: 2673-5490
KITopen-ID: 1000173441
HGF-Programm 54.11.11 (POF IV, LK 01) Accelerator Operation, Research and Development
Erschienen in 15th International Particle Accelerator Conference, Nashville, Tennessee : May 19-24, 2024, Nashville, Tennessee, USA : proceedings. Ed.: F. Pilat
Veranstaltung 15th International Particle Accelerator Conference (IPAC 2024), Nashville, TN, USA, 19.05.2024 – 24.05.2024
Verlag JACoW Publishing
Seiten 1804-1807
Externe Relationen Siehe auch
Schlagwörter Accelerator Physics, mc6-beam-instrumentation-controls-feedback-and-operational-aspects - MC6: Beam Instrumentation, Controls, Feedback, and Operational Aspects, MC6.D13 - MC6.D13 Machine Learning
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page