KIT | KIT-Bibliothek | Impressum | Datenschutz

A self-supervised embedding of cell migration features for behavior discovery over cell populations

Molina-Moreno, Miguel ; González-Díaz, Iván ; Mikut, Ralf ORCID iD icon 1; Díaz-de-María, Fernando
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract:

Background and objective:
Recent studies point out that the dynamics and interaction of cell populations within their environment are related to several biological processes in immunology. Hence, single-cell analysis in immunology now relies on spatial omics. Moreover, recent literature suggests that immunology scenarios are hierarchically organized, including unknown cell behaviors appearing in different proportions across some observable control and therapy groups. These dynamic behaviors play a crucial role in identifying the causes of processes such as inflammation, aging, and fighting off pathogens or cancerous cells. In this work, we use a self-supervised learning approach to discover these behaviors associated with cell dynamics in an immunology scenario.

Materials and methods:
Specifically, we study the different responses of control group and therapy groups in a scenario involving inflammation due to infarct, with a focus on neutrophil migration within blood vessels. Starting from a set of hand-crafted spatio-temporal features, we use a recurrent neural network to generate embeddings that properly describe the dynamics of the migration processes. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000173637
Veröffentlicht am 22.08.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2024
Sprache Englisch
Identifikator ISSN: 0169-2607
KITopen-ID: 1000173637
HGF-Programm 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Erschienen in Computer Methods and Programs in Biomedicine
Verlag Elsevier
Band 255
Seiten 108337
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page