KIT | KIT-Bibliothek | Impressum | Datenschutz

The {C}alderon operator for the {M}axwell system in the exterior of an infinite cylinder in $\mathbb{R}^3$

Kirsch, Andreas 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

We study the Calderon operator for the time-harmonic Maxwell system in the “exterior” $\Omega^+$ of an infinite cylinder in $x_3$-direction. The Calderon is the analogue of the Dirichlet-to-Neumann operator for the scalar Helmholtz equation. In the first part we study the case where the Calderon operator corresponds to solutions $u$ on $\Omega^+$ which, together with their curls, decay along $x_3$. In the second part we consider the case where the solution $u$ is assumed to be quasi-periodic with respect to $x_3$. In both cases we derive properties of the Calderon operator with respect to coercivity and compactness. These properties are useful for the investigation of problems in all of $\mathbb{R}^3$ if one uses the Calderon operator to reduce the problem to the “interior” of the cylinder. The proofs rely heavily on properties of the Hankel functions which are studied in detail in the appendix.


Volltext §
DOI: 10.5445/IR/1000173766
Veröffentlicht am 27.08.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 08.2024
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000173766
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 27 S.
Serie CRC 1173 Preprint ; 2024/20
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter Maxwell's equations, Calderon operator, radiation condition, cylindrical coordinates, Hankel functions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page