KIT | KIT-Bibliothek | Impressum | Datenschutz

Automatic recognition of excavator working cycles using supervised learning and motion data obtained from inertial measurement units (IMUs)

Molaei, Amirmasoud ORCID iD icon 1; Kolu, Antti; Lahtinen, Kalle; Geimer, Marcus ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This paper proposes an automatic method for excavator working cycle recognition using supervised classification methods and motion information obtained from four inertial measurement units (IMUs) attached to moving parts of an excavator. Monitoring and analyzing tasks that have been performed by heavy-duty mobile machines (HDMMs) are significantly required to assist management teams in productivity and progress monitoring, efficient resource allocation, and scheduling. Nevertheless, traditional methods depend on human observations, which are costly, time-consuming, and error-prone. There is a lack of a method to automatically detect excavator major activities. In this paper, a data-driven method is presented to identify excavator activities, including loading, trenching, grading, and idling, using motion information, such as angular velocities and joint angles, obtained from moving parts, including swing body, boom, arm, and bucket. Firstly, a dataset lasting 3 h is collected using a medium-rated excavator. One experienced and one inexperienced operator performed tasks under different working conditions, such as different types of material, swing angle, digging depth, and weather conditions. ... mehr


Preprint §
DOI: 10.5445/IR/1000173945
Veröffentlicht am 03.09.2024
Originalveröffentlichung
DOI: 10.1007/s41693-024-00130-0
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 24.12.2024
Sprache Englisch
Identifikator ISSN: 2509-811X, 2509-8780
KITopen-ID: 1000173945
Erschienen in Construction robotics
Verlag Springer
Band 8
Heft 2
Seiten 14
Projektinformation MORE (EU, H2020, 858101)
Vorab online veröffentlicht am 24.07.2024
Schlagwörter Activity recognition · Excavator · Earth-moving operations · Supervised learning · Inertial measurement unit (IMU)
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page