KIT | KIT-Bibliothek | Impressum | Datenschutz

Adaptive acquisition planning for visual inspection in remanufacturing using reinforcement learning

Kaiser, Jan-Philipp 1; Gäbele, Jonas 1; Koch, Dominik ORCID iD icon 1; Schmid, Jonas 1; Stamer, Florian ORCID iD icon 2; Lanza, Gisela 1
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

In remanufacturing, humans perform visual inspection tasks manually. In doing so, human inspectors implicitly solve variants of visual acquisition planning problems. Nowadays, solutions to these problems are computed based on the object geometry of the object to be inspected. In remanufacturing, however, there are often many product variants, and the existence of geometric object models cannot be assumed. This makes it difficult to plan and solve visual acquisition planning problems for the automated execution of visual inspection tasks. Reinforcement learning offers the possibility of learning and reproducing human inspection behavior and solving the visual inspection problem, even for problems in which no object geometry is available. To investigate reinforcement learning as a solution, a simple simulation environment is developed, allowing the execution of reproducible and controllable experiments. Different reinforcement learning agent modeling alternatives are developed and compared for solving the derived visual planning problems. The results of this work show that reinforcement learning agents can solve the derived visual planning problems in use cases without available object geometry by using domain-specific prior knowledge. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000174065
Veröffentlicht am 13.09.2024
Originalveröffentlichung
DOI: 10.1007/s10845-024-02478-0
Scopus
Zitationen: 3
Web of Science
Zitationen: 4
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2024
Sprache Englisch
Identifikator ISSN: 0956-5515, 1572-8145
KITopen-ID: 1000174065
Erschienen in Journal of Intelligent Manufacturing
Verlag Springer
Vorab online veröffentlicht am 27.08.2024
Nachgewiesen in Web of Science
OpenAlex
Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und InfrastrukturZiel 11 – Nachhaltige Städte und Gemeinden
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page