KIT | KIT-Bibliothek | Impressum | Datenschutz

Multimodal Diffusion Transformer: Learning Versatile Behavior from Multimodal Goals

Reuss, Moritz 1; Yağmurlu, Ömer Erdinç; Wenzel, Fabian; Lioutikov, Rudolf
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This work introduces the Multimodal Diffusion Transformer (MDT), a novel diffusion policy framework, that excels at learning versatile behavior from multimodal goal specifi- cations with few language annotations. MDT leverages a diffusion based multimodal transformer backbone and two self-supervised auxiliary objectives to master long-horizon manipulation tasks based on multimodal goals. The vast majority of imitation learning methods only learn from individual goal modalities, e.g. either language or goal images. However, existing large- scale imitation learning datasets are only partially labeled with language annotations, which prohibits current methods from learning language conditioned behavior from these datasets. MDT addresses this challenge by introducing a latent goal- conditioned state representation, that is simultaneously trained on multimodal goal instructions. This state representation aligns image and language based goal embeddings and encodes suffi- cient information to predict future states. The representation is trained via two self-supervised auxiliary objectives that enhance the performance of the presented transformer backbone. ... mehr

Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator ISBN: 979-8-9902848-0-7
KITopen-ID: 1000174157
Erschienen in Robotics: Science and Systems XX. Ed.: D. Kulic
Veranstaltung 20th Robotics: Science and Systems (2024), Delft, Niederlande, 15.07.2024 – 19.07.2024
Verlag Robotics: Science and Systems Foundation
Vorab online veröffentlicht am 08.07.2024
Schlagwörter Imitation Learning, Diffusion Models, Self-Supervised Learning, Robotics
Nachgewiesen in arXiv

Postprint §
DOI: 10.5445/IR/1000174157
Veröffentlicht am 13.09.2024
Seitenaufrufe: 52
seit 14.09.2024
Downloads: 13
seit 24.09.2024
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page