KIT | KIT-Bibliothek | Impressum | Datenschutz

Deep‐Learning‐Assisted Affinity Classification for Humoral Immunoprotein Complexes

Dadfar, Bahar 1; Vaez, Safoura 1; Haret, Cristian 1; Koenig, Meike ORCID iD icon 1; Mohammadi Hafshejani, Tahereh 1; Franzreb, Matthias ORCID iD icon 1; Lahann, Joerg 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

Immunoglobulins are important building blocks in biology and biotechnology. With the emergence of comprehensive deep-learning approaches, there are enormous opportunities for fast and accurate methods of classification of protein–protein interactions to arise. Herein, widely accessible image classification algorithms for species-specific typification of a range of different immunoglobulin G (IgG) complexes are repurposed. Droplets of various immunoglobulins mixed with a B-cell superantigen (SAg) (recombinant staphylococcal Protein A) are deposited onto hydrophobic polymer substrates and the resulting protein stains are imaged using polarized light microscopy. A comprehensive study based on 23 745 images finds that the pretrained convolutional neural network (CNN) InceptionV3 not only successfully categorizes IgGs from four different species but also predicts their binding affinity to Protein A: averaged over 36 binding pairs, the following are observed: 1) an overall accuracy of 81.4%, 2) the highest prediction accuracy for human IgG, the antibody with the highest binding affinity for Protein A, and 3) that the classification accuracy regarding the various IgG/Protein A ratios generally correlates with the binding strength of the protein–protein–complex as determined via circular dichroism spectroscopy. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000174321
Veröffentlicht am 19.09.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2024
Sprache Englisch
Identifikator ISSN: 2688-4062
KITopen-ID: 1000174321
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Small Structures
Verlag Wiley-VCH Verlag
Band 5
Heft 12
Seiten Art.-Nr.: 2400204
Vorab online veröffentlicht am 09.09.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page