KIT | KIT-Bibliothek | Impressum | Datenschutz

A bisection method for solving distance-based clustering problems globally

Kirst, Peter ; Bajbar, Tomáš 1; Merkel, Mario 1
1 Karlsruher Institut für Technologie (KIT)

Abstract:

In this article, we consider distance-based clustering problems. In contrast to many
approaches, we use the maximum norm instead of the more commonly used Euclidean norm to measure distances. This problem is nonsmooth and non-convex and, thus, difficult to solve to global optimality using standard approaches, which is common in cluster analysis. Therefore, we reformulate this continuous problem in light of graphtheoretical instances which enables us to construct a bisection algorithm converging to the globally minimal value of the original clustering problem by establishing valid upper and lower bounding procedures. Our numerical results indicate that our method performs well on data sets exhibiting clear cluster-pattern structure even for bigger data instances while still guaranteeing the global optimality of the computed solution. We compare our approach with the classical k-means algorithm and also discuss the limits and challenges of the proposed procedure.


Verlagsausgabe §
DOI: 10.5445/IR/1000174436
Veröffentlicht am 23.09.2024
Originalveröffentlichung
DOI: 10.1007/s11750-024-00684-w
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
KIT-Bibliothek (BIB)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2025
Sprache Englisch
Identifikator ISSN: 1134-5764, 1863-8279
KITopen-ID: 1000174436
Erschienen in TOP
Verlag Springer
Band 33
Heft 3
Seiten 437–469
Vorab online veröffentlicht am 11.09.2024
Nachgewiesen in Dimensions
OpenAlex
Web of Science
Scopus
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page