KIT | KIT-Bibliothek | Impressum | Datenschutz

Bayesian optimization algorithms for accelerator physics

Roussel, Ryan; Edelen, Auralee L.; Boltz, Tobias; Kennedy, Dylan; Zhang, Zhe; Ji, Fuhao; Huang, Xiaobiao; Ratner, Daniel; Garcia, Andrea Santamaria ORCID iD icon 1; Xu, Chenran ORCID iD icon 2; Kaiser, Jan; Pousa, Angel Ferran; Eichler, Annika; Lübsen, Jannis O.; Isenberg, Natalie M.; Gao, Yuan; Kuklev, Nikita; Martinez, Jose; Mustapha, Brahim; ... mehr

Abstract:

Accelerator physics relies on numerical algorithms to solve optimization problems in online accelerator control and tasks such as experimental design and model calibration in simulations. The effectiveness of optimization algorithms in discovering ideal solutions for complex challenges with limited resources often determines the problem complexity these methods can address. The accelerator physics community has recognized the advantages of Bayesian optimization algorithms, which leverage statistical surrogate models of objective functions to effectively address complex optimization challenges, especially in the presence of noise during accelerator operation and in resource-intensive physics simulations. In this review article, we offer a conceptual overview of applying Bayesian optimization techniques toward solving optimization problems in accelerator physics. We begin by providing a straightforward explanation of the essential components that make up Bayesian optimization techniques. We then give an overview of current and previous work applying and modifying these techniques to solve accelerator physics challenges. Finally, we explore practical implementation strategies for Bayesian optimization algorithms to maximize their performance, enabling users to effectively address complex optimization challenges in real-time beam control and accelerator design.


Verlagsausgabe §
DOI: 10.5445/IR/1000174517
Veröffentlicht am 24.09.2024
Originalveröffentlichung
DOI: 10.1103/PhysRevAccelBeams.27.084801
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Beschleunigerphysik und Technologie (IBPT)
Laboratorium für Applikationen der Synchrotronstrahlung (LAS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2024
Sprache Englisch
Identifikator ISSN: 2469-9888
KITopen-ID: 1000174517
Erschienen in Physical Review Accelerators and Beams
Verlag American Physical Society (APS)
Band 27
Heft 8
Seiten Art.-Nr.: 084801
Vorab online veröffentlicht am 06.08.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page