KIT | KIT-Bibliothek | Impressum | Datenschutz

Data Sharing Practices: The interplay of data, organizational structures, and network dynamics

Fassnacht, Marcel ORCID iD icon 1; Leimstoll, Jannis 1; Benz, Carina 1; Heinz, Daniel ORCID iD icon 1; Satzger, Gerhard ORCID iD icon 1
1 Karlsruhe Service Research Institute (KSRI), Karlsruher Institut für Technologie (KIT)

Abstract:

With the proliferation of data and advanced analytics, organizations are increasingly recognizing the potential value of sharing data across organizational boundaries. However, there is a lack of empirical evidence and systematic frameworks to guide the design of effective data sharing practices. Realizing the full potential of data sharing requires the effective design and implementation of data sharing practices by considering the interplay of data, organizational structures, and network dynamics. This study presents an empirically and theoretically grounded taxonomy of data sharing practices drawing on existing literature and real-world data sharing cases. The subsequent cluster analysis identifies four generic archetypes of data sharing practices, differing in their primary orientation toward compliance, efficiency, revenue, or society. From a theoretical perspective, our work conceptualizes data sharing practices as a foundation for a more systematic and detailed exploration in future research. At the practitioner level, we enable organizations to strategically develop and scale data sharing practices to effectively leverage data as a strategic asset.


Verlagsausgabe §
DOI: 10.5445/IR/1000174564
Veröffentlicht am 27.09.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik und Marketing (IISM)
Karlsruhe Service Research Institute (KSRI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 1019-6781, 1422-8890
KITopen-ID: 1000174564
Erschienen in Electronic markets
Verlag Springer
Band 34
Heft 47
Seiten Article no: 47
Vorab online veröffentlicht am 26.09.2024
Schlagwörter Data sharing, Data ecosystems, Taxonomy, Archetypes, Cluster analysis
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page