KIT | KIT-Bibliothek | Impressum | Datenschutz

Predicting Roughness Effects on Velocity and Temperature in Turbulent Flow - A Data-Driven Approach

Dalpke, Simon Benedikt ORCID iD icon 1; Yang, Jiasheng ORCID iD icon 1; Stroh, Alexander ORCID iD icon 1; Frohnapfel, Bettina ORCID iD icon 1
1 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)

Abstract:

Accurately predicting the impact of arbitrary rough surfaces on turbulent fluid flow is crucial for industrial applications and for enhancing the precision of RANS simulations. Thermohydraulic turbulent roughness properties, specifically the augmentation in velocity $\Delta U^+$ and temperature $\Delta \Theta^+$, describe this effect, but their prediction for a rough surface currently requires a detailed simulation. Recently, the application of neural networks for these types of predictions have been developed to circumvent the costly simulations. $93$ high fidelity direct numerical simulations of a fully-developed turbulent channel flow at $Re_{\tau} \approx 800$ with artificially generated realistic rough surfaces provide a sufficient database for training, validation, and testing of a neural network architecture with strong predictive capabilities for $\Delta U^+$. For better explainability of the 'black-box' model, a genetic programming technique, namely symbolic regression, is applied to translate the data-driven model into an understandable, simple expressions using well-known statistical parameters. Nevertheless, the prediction of the temperature augmentation using an analog procedure remains insufficient, particularly since the dependencies on the Prandtl number $Pr$ have not yet fully been investigated.
... mehr


Volltext §
DOI: 10.5445/IR/1000174591
Veröffentlicht am 30.09.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Publikationstyp Vortrag
Publikationsdatum 09.09.2024
Sprache Englisch
Identifikator KITopen-ID: 1000174591
Veranstaltung 2nd Nationales Hochleistungs Rechnen Conference (NHR 2024), Darmstadt, Deutschland, 09.09.2024 – 12.09.2024
Schlagwörter GPU-Computing, Roughness, Symbolic Regression, Neural Network
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page