KIT | KIT-Bibliothek | Impressum | Datenschutz

Data-driven correlations for thermohydraulic roughness properties

Dalpke, Simon Benedikt ORCID iD icon 1; Yang, Jiasheng ORCID iD icon 1; Forooghi, Pourya; Frohnapfel, Bettina ORCID iD icon 1; Stroh, Alexander ORCID iD icon 1
1 Institut für Strömungsmechanik (ISTM), Karlsruher Institut für Technologie (KIT)

Abstract:

Thermohydraulic turbulent roughness properties, namely the shift of velocity $\Delta U^+$ and temperature $\Delta \Theta^+$, account for roughness effects and their prediction is of importance in engineering applications.
Recent developments center around the application of machine learning techniques, especially neural networks. In preceding work (Yang 2023), rough surfaces are artificially generated given a specific probability density functions and power spectrums. The obtained $93$ high fidelity direct numerical simulations of a fully-developed turbulent channel flow at $Re_{\tau} \approx 800$ and $Pr=0.71$ serve as a database for training, validating and testing of neural network architectures.
The derived data-driven model, however, remains a "black-box" tool with attractive predicting capabilities.
We present a symbolic regression approach used to translate the developed neural network into an empirical correlation using understandable and simplistic statistical roughness parameters (e.g., Skewness $Sk$). %These roughness parameters (e.g., Skewness $Sk$) are computed given the roughness height map.
It employs genetic programming to construct a correlation to approximate the discretized version of the neural network. ... mehr


Volltext §
DOI: 10.5445/IR/1000174592
Veröffentlicht am 30.09.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Strömungsmechanik (ISTM)
Publikationstyp Vortrag
Publikationsdatum 18.09.2024
Sprache Englisch
Identifikator KITopen-ID: 1000174592
Veranstaltung 1st European Fluid Dynamics Conference (EFDC1 2024), Aachen, Deutschland, 16.09.2024 – 20.09.2024
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page