KIT | KIT-Bibliothek | Impressum | Datenschutz

Evaluating Parametric Integrals in the Minkowski Regime without Contour Deformation

Jones, Stephen; Olsson, Anton 1; Stone, Thomas
1 Institut für Theoretische Physik (ITP), Karlsruher Institut für Technologie (KIT)

Abstract:

We present selected examples demonstrating an alternative approach to contour deformation for
numerically computing loop integrals in the Minkowski regime. This method focuses on identify-
ing singular hypersurfaces (varieties of the F polynomial) and mapping them to known points
which can then be resolved by employing blow-ups/sector decomposition techniques, thereby
avoiding the need for contour deformation. Using this technique, we achieve improved conver-
gence properties without the need for contour deformation, which is known to significantly in-
crease the complexity of the integrand by introducing, for example, derivatives of the F poly-
nomial and complicated Jacobians. We highlight that while we have only tested the approach on
selected one-, two- and three-loop massless and one-loop massive examples, it shows promise for
practical applications, offering potential benefits over the traditional approach. Evaluation times
are compared with existing contour deformation implementations to illustrate the performance of
this alternative method.


Verlagsausgabe §
DOI: 10.5445/IR/1000174719
Veröffentlicht am 10.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Physik (ITP)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 17.09.2024
Sprache Englisch
Identifikator ISSN: 1824-8039
KITopen-ID: 1000174719
Erschienen in Loops and Legs in Quantum Field Theory (LL2024), Wittenberg, 14th-19th April, 2024
Veranstaltung Loops and Legs in Quantum Field Theory (LL 2024), Lutherstadt Wittenberg, Deutschland, 14.04.2024 – 19.04.2024
Verlag Scuola Internazionale Superiore di Studi Avanzati (SISSA)
Seiten Art.-Nr.: 36
Serie 467
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page