KIT | KIT-Bibliothek | Impressum | Datenschutz

A rational ansatz for the approximation of Koopman eigenfunctions

Römer, Ulrich J. ORCID iD icon 1; Breitenhuber, Margarete 1
1 Institut für Technische Mechanik (ITM), Karlsruher Institut für Technologie (KIT)

Abstract:

Koopman operator theory offers a basis for the systematic transformation and linearization of complex dynamical systems. We propose a method to approximate eigenfunctions of the Koopman operator for sufficiently smooth, deterministic and autonomous dynamical systems with hyperbolic fixed points in an equation-based context. Approximations of the eigenfunctions are obtained in form of a rational ansatz whose coefficients are determined by minimizing a residual through a bi-quadratic optimization problem. In addition, we consider an extension of the Hartman-Grobman theorem, which was first proposed by Lan and Mezić in 2013, as a linear constraint. The implementation for a damped pendulum shows that the approach works in general, however, the optimization problem is non-convex and thus sensible w. r. t. initial conditions, and increases proportional to the number of ansatz functions to the power of four.


Verlagsausgabe §
DOI: 10.5445/IR/1000174753
Veröffentlicht am 08.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Mechanik (ITM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2024
Sprache Englisch
Identifikator ISSN: 1617-7061
KITopen-ID: 1000174753
Erschienen in PAMM
Verlag Wiley-VCH Verlag
Band 24
Heft 3
Vorab online veröffentlicht am 30.09.2024
Schlagwörter Koopman, Koopman eigenfunction, Pendulum
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page