KIT | KIT-Bibliothek | Impressum | Datenschutz

TLD-READY: Traffic Light Detection -- Relevance Estimation and Deployment Analysis

Polley, Nikolai ORCID iD icon 1; Pavlitska, Svetlana 1,2; Boualili, Yacin; Rohrbeck, Patrick; Stiller, Paul; Bangaru, Ashok Kumar; Zöllner, J. Marius 1,2
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)
2 FZI Forschungszentrum Informatik (FZI)

Abstract:

Effective traffic light detection is a critical component of the perception stack in autonomous vehicles. This work introduces a novel deep-learning detection system while addressing the challenges of previous work. Utilizing a comprehensive dataset amalgamation, including the Bosch Small Traffic Lights Dataset, LISA, the DriveU Traffic Light Dataset, and a proprietary dataset from Karlsruhe, we ensure a robust evaluation across varied scenarios. Furthermore, we propose a relevance estimation system that innovatively uses directional arrow markings on the road, eliminating the need for prior map creation. On the DriveU dataset, this approach results in 96% accuracy in relevance estimation. Finally, a real-world evaluation is performed to evaluate the deployment and generalizing abilities of these models. For reproducibility and to facilitate further research, we provide the model weights and code: https://github.com/KASTEL-MobilityLab/traffic-light-detection.


Volltext §
DOI: 10.5445/IR/1000174813
Veröffentlicht am 09.05.2025
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 11.09.2024
Sprache Englisch
Identifikator KITopen-ID: 1000174813
HGF-Programm 46.23.03 (POF IV, LK 01) Engineering Security for Mobility Systems
Verlag arxiv
Umfang 7 S.
Bemerkung zur Veröffentlichung The paper was accepted for the conference IEEE ITSC 2024 and presented at the conference in september https://ieee-itsc.org/2024/.

The paper was also made available as Open Access with Arxiv, which DOI is used here as the proceedings of the conference aren't public yet.
Schlagwörter Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG)
Nachgewiesen in Dimensions
arXiv
OpenAlex
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page