KIT | KIT-Bibliothek | Impressum | Datenschutz

TLD-READY: Traffic Light Detection ‐ Relevance Estimation and Deployment Analysis

Polley, Nikolai ORCID iD icon 1,2; Pavlitska, Svetlana 1; Boualili, Yacin 3; Rohrbeck, Patrick 3; Stiller, Paul 3; Bangaru, Ashok Kumar 3; Zöllner, J. Marius 1,2
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)
2 Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL), Karlsruher Institut für Technologie (KIT)
3 Karlsruher Institut für Technologie (KIT)

Abstract:

Effective traffic light detection is a critical component of the perception stack in autonomous vehicles. This work introduces a novel deep-learning detection system while addressing the challenges of previous work.
Utilizing a comprehensive dataset amalgamation, including the Bosch Small Traffic Lights Dataset, LISA, the DriveU Traffic Light Dataset, and a proprietary dataset from Karlsruhe, we ensure a robust evaluation across varied scenarios.
Furthermore, we propose a relevance estimation system that innovatively uses directional arrow markings on the road, eliminating the need for prior map creation. On the DriveU dataset, this approach results in 96\% accuracy in relevance estimation. Finally, a real-world evaluation is performed to evaluate the deployment and generalizing abilities of these models.
For reproducibility and to facilitate further research, we provide the model weights and code: https://github.com/KASTEL-MobilityLab/traffic-light-detection


Originalveröffentlichung
DOI: 10.1109/ITSC58415.2024.10919699
Scopus
Zitationen: 4
Dimensions
Zitationen: 3
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 24.09.2024
Sprache Englisch
Identifikator ISBN: 979-83-315-0592-9
KITopen-ID: 1000182046
HGF-Programm 46.23.03 (POF IV, LK 01) Engineering Security for Mobility Systems
Erschienen in 2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), Edmonton, 24th-27th September 2024
Veranstaltung 27th Internationla Conference on Intelligent Transportation Systems (ITSC 2024), Edmonton, Kanada, 24.09.2024 – 27.09.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 3800–3806
Schlagwörter machine learning
Nachgewiesen in OpenAlex
Dimensions
Scopus
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 13 – Maßnahmen zum Klimaschutz
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page